Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene

نویسندگان

  • Chun Sung Kim
  • Hack Sun Choi
  • Cheol Kyu Hwang
  • Kyu Young Song
  • Byung-Kwon Lee
  • Ping-Yee Law
  • Li-Na Wei
  • Horace H. Loh
چکیده

Previously, we reported that the neuron-restrictive silencer element (NRSE) of mu opioid receptor (MOR) functions as a critical regulator to repress the MOR transcription in specific neuronal cells, depending on neuron-restriction silence factor (NRSF) expression levels [C.S.Kim, C.K.Hwang, H.S.Choi, K.Y.Song, P.Y.Law, L.N. Wei and H.H.Loh (2004) J. Biol. Chem., 279, 46464-46473]. Herein, we identify a conserved GC sequence next to NRSE region in the mouse MOR gene. The inhibition of Sp family factors binding to this GC box by mithramycin A led to a significant increase in the endogenous MOR transcription. In the co-immunoprecipitation experiment, NRSF interacted with the full-length Sp3 factor, but not with Sp1 or two short Sp3 isoforms. The sequence specific and functional binding by Sp3 at this GC box was confirmed by in vitro gel-shift assays using either in vitro translated proteins or nuclear extract, and by in vivo chromatin immunoprecipitation assays. Transient transfection assays showed that Sp3-binding site of the MOR gene is a functionally synergic repressor element with NRSE in NS20Y cells, but not in the NRSF negative PC12 cells. The results suggest that the synergic interaction between NRSF and Sp3 is required to negatively regulate MOR gene transcription and that transcription of MOR gene would be governed by the context of available transcription factors rather than by a master regulator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuron-restrictive silencer factor–mediated downregulation of μ-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain

Bone cancer pain has been reported to have unique mechanisms and is resistant to morphine treatment. Recent studies have indicated that neuron-restrictive silencer factor (NRSF) plays a crucial role in modulating the expression of the μ-opioid receptor (MOR) gene. The present study elucidates the regulatory mechanisms of MOR and its ability to affect bone cancer pain. Using a sarcoma-inoculated...

متن کامل

Neuron-restrictive silencer factor functions to suppress Sp1-mediated transactivation of human secretin receptor gene.

In the present study, a functional neuron restrictive silencer element (NRSE) was initially identified in the 5' flanking region (-83 to -67, relative to ATG) of human secretin receptor (hSCTR) gene by promoter assays coupled with scanning mutation analyses. The interaction of neuron restrictive silencer factor (NRSF) with this motif was later indicated via gel mobility shift and ChIP assays. T...

متن کامل

By up-regulating μ- and δ-opioid receptors, neuron-restrictive silencer factor knockdown promotes neurological recovery after ischemia

We investigated the effects of neuron-restrictive silencer factor (NRSF) on proliferation of endogenous nerve stem cells (NSCs) and on μ- and δ-opioid receptor (MOR/DOR) expression in rats after cerebral ischemia. Among 100 rats subjected to cerebral ischemia, 20 rats were transfected with NRSF shRNA, and the remaining 80 were randomly assigned to normal, sham, model, and negative control (NC) ...

متن کامل

Protein kinase A regulates cholinergic gene expression in PC12 cells: REST4 silences the silencing activity of neuron-restrictive silencer factor/REST.

The role of protein kinase A in regulating transcription of the cholinergic gene locus, which contains both the vesicular acetylcholine transporter gene and the choline acetyltransferase gene, was investigated in PC12 cells and a protein kinase A-deficient PC12 mutant, A126.1B2, in which transcription of the gene is reduced. The site of action of protein kinase A was localized to a neuron-restr...

متن کامل

Transcriptional regulation of mouse mu opioid receptor gene: Sp3 isoforms (M1, M2) function as repressors in neuronal cells to regulate the mu opioid receptor gene.

The 5'-flanking region of the mouse mu opioid receptor (MOR) gene has two promoters, referred to as distal and proximal. MOR mRNA is predominantly initiated by the proximal promoter. Previously, several important cis-elements and trans-factors have been shown to play a functional role in the proximal promoter of the MOR gene. In this study, we defined another functional, negative regulatory ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006